
Getting started with Stata 13
August 2015 - Version 3.1

Evelyn Ersanilli

Table of Contents
Opening Stata .. 3

File types.. 4

Log-files ... 4

Do-files .. 5

Ado-files... 7

Opening and saving data ... 7

Stata files ... 7

SPSS files .. 7

Excel files ... 7

Saving data .. 7

Good data management ... 8

Stata language and grammar .. 8

Missing values ... 9

General commands ... 9

Conditions ... 11

Exploring data .. 13

Codes & labels ... 14

Summarizing data .. 15

Generating and recoding variables ... 17

Examples.. 18

Generating an index .. 22

Variable and value labels ... 23

Selecting data and variables (creating a subset) ... 24

Basic statistical tests .. 25

Chi-square ... 25

T-tests .. 25

Anova ... 27

Correlation ... 27

Regression ... 28

Factor variables ... 28

Keeping sample size constant across models ... 29

2

Basic graphs ... 30

Exporting tables to Excel, Word or LaTeX ... 31

Merging datasets ... 33

Loops ... 35

Help and further reading ... 36

3

Opening Stata
Select Stata from the programme list under “start”.

As you can see, the Stata window is divided into five sections. You can adjust the size of each of these

sections.

Variables: This window shows all the variables in the dataset. It displays the variable name (the name

you use in the commands) and the variable label (a description of the variable, often the question

text). If you have not yet opened a dataset this window will be empty.

Properties: Shows the properties of the dataset (e.g. filename, size) and of any variable selected in

the ‘variables’ tab. For example the variable label, type and value label (see below). There are

broadly two variable types: string (str) and numeric (incl. byte, float, long, double). A string variable

is when the cells in the dataset for that variable contain text. Numeric variables contain numbers.

Please note that this is not directly related to measurement level. You can input a nominal variable as

either a numeric or a string variable. For example, for gender you could enter 1 for male, and 2 for

female (numeric), or enter the text “male” and “female” (string). Format denotes the maximum

number of characters (number or letters) of each variable.

Review: This window lists all the commands you have typed in the command window. Commands

run from do-files (see below) will show up as “. do “[file path]””. It will also display the commands

given via the drop-down menus. If a command is displayed in red font, it means it was not (fully)

executed. This is either because there is a mistake in the command or because you ended the

execution yourself.

I recommend dragging these three sections (variables, properties and review) to the left hand side of

the screen, and layer them (make 3 tabs). You can do this by dragging and dropping them on top of

each other.

Command: In this window you can type the commands. When you hit the enter key, the command

will be executed and the command window will be cleared. You can retrieve previous commands

listed in the review window in the command window by either clicking on the command in the

review window (it will then be copied to the command window), or by using the “page up” key (this

only works if the cursor is in the command window).

Output: This is the biggest section of the screen1. When you open Stata, this window will display the

version number. This window will display all output (codes, tables, error messages). Stata is much

faster than SPSS, this is partly because the lay-out is less fancy, however Stata is very flexible and it is

much easier to make “publication ready” tables in Stata than in SPSS.

By default Stata will display the output in bits: it pauses when the output window is full. If you have a

large table or other output that does not fit onto your screen, Stata will display only the top part. If

you click “-more-” at the bottom of the output window, type ‘m’ or click on in the toolbar, Stata

will display the next bit. If you are not interested in the rest of the output you can type ‘q’ or click on

1 The default setting is a white screen with black text, to switch to the energy-saving (and friendlier on the
eyes) black screen with green, red and yellow text, go to ‘edit’->’preferences’->general preferences’->’color
scheme’ and select ‘classic’

4

 in the toolbar. This will stop the output (and turn the command in the review window red). You

cannot type in the command window until the “-more-“ condition has been cleared.

If you prefer to have all output at once, rather than bit by bit you can switch off the ‘more’ setting by

typing “set more off” in the command window. You can change it back by typing “set more on”.

Contrary to SPSS, Stata will only keep a limited amount of information in the output window. Once

this amount has been reached, Stata clears the oldest output to make room for more. You can adjust

the maximum amount of output that Stata retains at any one point by typing “set scrollbufsize

[number of characters]” (the default is 200,000 characters). The change in buffer size does not occur

in the current Stata session; but takes effect the next time Stata is started (so if you want to use it

straight away you need to close and reopen Stata after changing the scrolling buffer).

If you are missing one of the five main sections, you can add it by going to “Window” in the menu bar

and selecting the name of the window you are missing.

Contrary to SPSS the database is not part of the main window. If you want to see the data, you need

to open the data editor by clicking on to browse or via the menu “Data->Data editor (browse)”.

If a variable has labelled values, Stata will display the labels, rather than the values (so for example

for variable B1 in the ESS subset it will show the label “very interested” rather than code “1”). Red

text signifies a string variable. Blue text signals a numeric variable.

You can also edit the data. For this you need to click on or via the menu “Data->Data editor

(edit)”. However it is very bad data management to make changes in the data by hand. This is

because you can easily make a mistake that is difficult (if not impossible) to correct. Instead you

should make changes to the data via a do-file.

File types

Log-files

Log-files store everything that is displayed in the output window (commands, tables). Graphs are not

displayed in the output window and therefore not included in log-files. Log-files are comparable to

SPSS output files. They can be a very useful reference tool and a way of sharing your output with

others. To start a log-file type

 . log using "[pathname\filename].smcl"

in the command window or, better yet, include it in your do-file. “.smcl” log-files can only be read in

Stata. You can also store log files as “.log”. These files can be read in notepad and MS Word and can

also be edited (“.scml” files cannot be edited).

 . log using "[pathname\filename].log"

To temporarily stop the log file recording, type: . log off

To resume recording, type: . log on

When you are done you can close the log by typing: . log close

5

To view the log file (during or after analyses), type

 . view "[pathname\filename].log"

All these options are also available via “File->Log->….” in the main window.

Do-files

There are two main ways of working with statistical programmes such as Stata and SPSS. The first is

to use the drop-down menus and click on whatever operation you would like to execute (just like you

would do in Word or Excel). The second is to use commands. These commands are the language of

Stata. The rules of this language are called its “syntax”.

There are many advantages to using commands over drop-down menus. You can easily fine-tune

settings, repeat a range of similar operations much faster, and, most importantly, you and others to

trace what you have done. This is especially useful if you want to go back to an analysis or recoding

that you have done a week or longer ago. You do not have to remember what you have done, you

can just see it. If you are working with several people on the same dataset you can share your do-file

and if you have a problem you can email it to someone so they can try to help you.

Stata commands are stored in so-called “do-files”. You can open a do-file by clicking on

the do-file icon in the taskbar at the top of the screen. This will open the “do-file editor”. In the do-

file editor can open an existing do-file (in the do-file menu: “File->Open”) or begin a new one. If you

start a new do-file make sure to save it before you start typing commands. If you open a do-file from

windows explorer or email attachment, Stata will immediately try to run all the commands in the do-

file. This is rarely what you want, so it is best to open the files in the do-file editor.

Kohler & Kreuter (2012) recommend working with two types of do-file:

1. For all data manipulation – they call this “creation do-files”: contains all the preparations for

analysis such as generating new variables, recoding, selecting subsets of the data, etc.

2. For all data analysis: frequency tabs, crosstabs, regression analyses, etc.

Make sure to always give your do-files clear names (for examples ‘exercises week 3’, ‘xenophobia

analysis – recoding file’, ‘stats assignment - draft – 20140207’. It is best to store them in the same

directory as your data.

To run a command in a do-file, select the lines with the command it (1) and type “Ctrl+d” or click on

the “do” icon in the task bar (2):

1

2

6

Sometimes you want to play around with your data. You will then often first type commands in the

command window. Once you have found the command that does what you want, you can copy-

paste it into the do-file (right-click on the command in the review window, ‘copy’, go to do-file, right-

click ‘paste’).

If you do not know the command that you need, you can use the help function in Stata (see below).

So for instance if you would like to do a cross tabulation of two variables, type ‘help tab’ in the

command window. You could also first use the drop-down menus. Stata will display the code of the

selected operation in the review window. You can then copy this into your do-file.

I strongly recommend you to write comments in your do-file. This allows you to organise the file, e.g.

by adding titles, and subtitles, and will also make it easier to reconstruct what you have done and

why. I often also write a brief comment on the results of an analysis. There are three ways of letting

Stata know that a piece of text is a comment instead of a command:

1. Put an * at the start of a line

2. Put // before the start of a comment (either at the start of a line or next to a command)

3. If you want to write a longer comment start with /* then write the comment and at the end

type */. Only /* */ allows you to write comments that span more than one line in the do-

file.

If you’ve done this correctly, the comment text will turn green and the commands will remain black.

Stata will assume a code ends, when a line ends.

If a command is very long it is best to delimit it (split it up). For this you can use the standard

delimiter “///”. Make sure there is always a space between the last code or variable name and the

delimiter. So

 . mean B4 B5 B6 B7 B8 ///
B9 B10 B11

The do-file editor has a “find” function. You can use this to easily navigate around your do-file (if you

have used headings, you can easily go to a specific heading).

7

Ado-files

One of the biggest advantages of Stata is that users can write their own commands and share these

with other users. These types of commands are stored in “.ado-files”. They can be installed by typing

“findit [name of ado-file]” in the command window. The command is listed under “Web resources

from Stata and other users”. Click on the link to download and install the command. You only need to

install a command on a computer once.

Opening and saving data

Stata files

There are various ways of opening a Stata data file. You can double-click on the file in Windows

explorer; this will open both the Stata programme and the file. You can open the file from within

Stata by clicking “file->open” in the main menu, or by typing the file name and path in the command

window, or running the code from the do-file:

. use "C:\Users\Evelyn\Dropbox\Stats\ESS5 subset 20120111.dta", clear

It is important to put the file name and path between quotation marks (“ ”) so that Stata knows

where the file path starts and ends, and does not get stuck on any spaces. The addition of “clear”

tells Stata to first close any dataset that was already open - any unsaved changes made to that

dataset will be lost.

SPSS files

Unfortunately there is currently no easy way of opening SPSS data in Stata without the help of SPSS

or commercial software. The ado-file “usespss” does not work with the newer 64-bit versions of

Stata only with 32-bit versions. Luckily SPSS (available on all university computers) allows you to save

data in Stata format. There is also a programme called “Stattransfer” that can change files into

Statafiles and Statafiles into other types of file. Please do not use the free trial version of this

programme as it randomly deletes about 6% of the cases in your data.

Excel files

You can copy and paste Excel data straight into the Stata data editor. If the top row consists of strings

(words), Stata will ask whether it should treat the first row as data or as variable names. Select

whatever is appropriate.

Alternatively, save the Excel file as “[filename].txt” or “[filename].csv”. Then in Stata type

. insheet using “[pathname\filename].txt”, clear

or

. insheet using “[pathname\filename].csv”, clear

After opening the file type “compress” to get rid of any access information and save the file in Stata
format.

Saving data

To save a file under a new name (what you would normally do using the option “save as”), type

8

. save “[pathname\new_filename].dta”

in the command window, or type

. save “[pathname\filename].dta”, replace

to save the file under an existing file name (overwriting the previous version of that file).

Good data management
To prevent losing data or making unwanted (and irreversible!) changes, please stick to the following

data management rules.

 Always give your dataset a clear name so you can easily locate it

 Always keep a copy of the original dataset. Do not save any changes to this copy. This data is

your ‘source’; you should always be able to go back to it in case you fear (or know) you have

made a mistake. When exiting Stata and asked if you want to save changes to the data you

should almost always click “no”. However make an extra copy of your raw data for safe

keeping just in case you accidentally click “yes”.

 Never make changes to the data directly in the data editor; always use a do-file. This way you

can trace what you have changed and there is less risk of accidentally changing the wrong

variable or case.

 When you recode a variable, for instance if you want to merge categories or invert the

coding, always give this new variable a different name. This way you preserve the original

variable which is very useful in case you have made a mistake in the recoding or decide you

want to make different sub-categories. You can also use this original variable to check if the

recoding worked the way you wanted it to.

 Always work with do-files or log-files to keep track of the data manipulation and analyses you

have done. Make sure to save these files at the end of each session and during the session.

 Only hit the ‘save’ button on your do-files (see below), not on your data-files. Only save data-

files if you have created a subset of the data (e.g. the 6 country subset of ESS we are working

with) or have combined several files into one and use a new name.

Stata language and grammar
Stata commands are a language; there are grammar rules and different ways of ‘saying’ the same

thing. Once you understand the basic grammar and vocabulary it will become easier to find new

commands, correct mistakes and fine tune the options. The grammar and rules of the Stata language

are called its syntax.

The standard Stata syntax is

. [command] [variablename(s)] [if] [in] [, options]

These are the building blocks of the Stata language. Depending on the [command], certain elements

can be required, permitted or prohibited. As you can see, the options always come after a comma.

Sometimes a command requires [varname]; this means only one variable at a time can be entered. If

it requires [varlist] one or more variable names can be entered.

You can use the ‘if’ qualifier to run an analysis only on a subset of the data (see below)

9

You can use the ‘in’ qualifier to select of a range of observations (rows) in the dataset, for instance

the first ten observations.

Stata is case sensitive. Commands should therefore always be typed in lowercase and variable names

in the correct case (so for the ESS subset always in UPPERCASE). Stata is also very picky about

quotation marks .The marks ` ‘ “ and ” have different meanings. If you use the wrong kind, your

command will not work. Stata will tell you ‘invalid syntax’.

For many commands it suffices to only type the first few letters. In the help-files these letters are

underlined. For example, the command “summarize” can be abbreviated to “sum”.

The same holds for variables names. Instead of typing the entire name it suffices to only type the

part of the variable that makes it uniquely identifiable. For example, you could abbreviate

“household” to “hous”, unless there is another variable in the dataset that is named “house”. In that

case you need to type at least “househ” for Stata to understand which variable you want.

Alternatively if you want to address a range of variables with a similar ending you can type “[start of

variable name]*”. For example, if you have 3 variables on migration destination, “migr1”, “migr2”

and “migr3”, you can call them all by typing “migr*”

All Stata command lines in this guide and most Stata handbooks are printed in italics and start with a

period (.). This is how Stata will display the commands in the output window. However you should

not include this ‘.’ when typing the commands! Stata takes the end of a line (a line break) as the end

of a command unless the line ends with ‘///’ (see above). (This is a difference with SPSS where

commands need to end with ‘.’). This means you need to start each command on a new line.

Missing values

In Stata, missing values are identified by “.” Stata sees this as the highest possible value. It knows not

to use these variables in analyses. If you want to distinguish between different types of missing

values (e.g. between “refusal” and “don’t know”) you can also use “ .a”, “.b”, “.c” etc. and attach

these to the different reasons (eg “.a = refusal”, “.b= don’t know”). The treatment of missing values

as “positive infinity” is very useful when you are recoding variables or selecting cases but it can also

lead to mistakes if you forget to exclude the missing cases in generating new variables.

In datasets, missing values often have codes such as ‘9’ for ‘don’t know’. If this is the case you will

need to recode these values to missing values (see Generating and recoding variables) before you do

anything else (look at means, t-tests, regressions).

General commands

clear Clear the memory of Stata. Any unsaved changes to the data will be lost. The option

“, clear” can be used with “use” commands (see above)

, replace This is an option for any of the save commands, and also for some other commands.

Tells Stata to overwrite the existing file/variable by that name.

capture By default Stata stops running a do-file when it runs into a command that does not

work. Adding the prefix capture to a command tells Stata to continue to the next

command even if there is a problem.

10

quietly Tells Stata to run a command but not show the output in the output window. This

can be convenient if you are doing complex recoding.

display Stata’s calculator function. For example

. display 2+4

sort [varlist] Sort the observations in the dataset from low to high based on the variables listed in

[varlist]. For some commands to work it is essential that the data is sorted. If it isn’t,

Stata will give an error message “data not sorted”. You can also sort by 2 variables,

for example

 . sort cntry idno

sorts data first by country number and within country by person identification

number.

gsort [varlist] With this command you can sort data both ascending (A-Z, 1-10) or

descending (Z-A, 10-1). For descending type “-[varlist]” instead of “[varlist]”.

For example, to sort by descending age, type

. gsort -age

by [varlist]: Prefix available for a wide range of commands; tells Stata to run the command

separately for each of the values of the variables in specified in [varlist]. This only

works if the data is sorted according to these variables. For example

 . sort gndr cntry
. by gndr cntry: sum B4

displays the summary statistics for variable B4 for each gender in each country.

bysort [varlist]: same as the previous command but also sorts the observations in the data

. bys gndr cntry: sum B4

preserve if typed before data manipulation commands, it preserves the data after program

termination to the state that is was in just before the ‘preserve’ command was given.

restore restores the data now (instead of after program termination) to the point where the

“preserve” command was given.

11

Conditions

if To specify a command should only be applied to cases that satisfy the ‘if’ conditions.

You can combine a large range of conditions for the same command.

Operators that can be used to generate new variables or to specify conditions for inclusion are:

Arithmetic Relational Logical

+ addition > greater than & and
- subtraction < less than | or
* multiplication >= greater or equal ! not
/ division <= less or equal ~ not
^ power == equal
sqrt(X) Square root of the number of

variable ‘X’
!= not equal
~= not equal

ln(X) Natural logarithm of variable ‘X’

A double equal sign (==) is used for equality testing in ‘if’ conditions.

For example, to get a frequency table (tab) of the variable age only for women (the variable “gndr”

takes on the value of “2” for women – you can find this information in the codebook.)

. tab age if gndr==2

Typing “tab age if gndr=2” (with only one “=”) will result in an error message (“invalid syntax”).

Operators can also be combined. To get a frequency tab of gender for people aged 25-64, type

. tab gndr if age>=25 & age<65

In words: show a frequency table of gender if the age of an observation (respondent) is bigger than

or equal to 25 and the age is lower than 65. (Stata has not sign for ‘between’.)

The command

. tab gndr if age<50

will give a frequency table of gender only for observations (respondents) under 50.

The command

. tab gndr if age>50

will give a frequency tab of gender only for respondents over 50. But remember; Stata treats missing

values as the largest numbers in the data so Stata will include people of whose age is unknown (i.e.

cases with missing value: “.”). Check if the missing values for age have already been encoded (i.e. are

Stata recognised missing values, “.” “,a” etc. See below). If so, type

. tab gndr if age>50 & age<.

to get a frequency table of gender for all people in the dataset aged over 50 excluding cases with

missing values on age.

12

There is a hierarchy in the operators. Just as in calculus “/” (division) takes priority over “+” and “-“.

You will need to use parentheses to ensure Stata follows the order you want. For example, if you

want to calculate the total of 2 plus 2 and then divide this by 5, the command is not

. dis 2+2/5 //this will give 2.4 because Stata first divides 2 by 5 and then adds
the other 2

but

. dis (2+2)/5 //this will correctly give 0.8 (4/5)

The same applies to the logical operators. “|” (or) takes priority over “&” (and). So if you want to

know the religious attendance of respondents under the age of 50 living in either Spain or the UK,

the code is

. tab C22 if cntry==”ES” & age<50 | cntry==”GB” & age<50

If you had typed

. tab C22 if cntry==”ES” | cntry==”GB” & age<50

Stata would have shown the results for all respondents in Spain and respondents under 50 in the UK.

Similarly

. tab C22 if age<50 & cntry==”ES” | cntry==”GB”

would have resulted in a table of respondents under 50 in Spain and all UK respondents.

With help of parentheses you can indicate the order of selection:

. tab C22 if (cntry==”ES” | cntry==”GB”) & age<50

will also give the religious attendance of respondents under the age of 50 living in either Spain or the

UK.

For string variables (see above) the values will need to be written in quotation marks. For example if

you want to look at the age of the respondents in Spain, you type

 . tab age if cntry==“ES”

Or if you would like to know the age of the respondents in all countries in the dataset except Spain

. tab age if cntry!=“ES”

For more advanced functions, see:
Cox, N.J. (2011) Speaking Stata: Fun and fluency with functions, Stata Journal, 11: 460-471

http://www.stata-journal.com/article.html?article=dm0058

13

Exploring data
The first step in data analysis is familiarising yourself with the dataset. Stata has several useful

commands for this.

describe [varlist] Displays the name of the dataset; number of variables and observations and

a list of all variables with the names and specifications (storage type, display

format, value label and variable label).

 You can specify that you only want the information on a specific variable, e.g.

. describe B4

 Type “help describe” to discover all the options.

inspect [varlist] Shows the number of missing and non-missing values and the number of

unique values of the variable specified under [varname]. If no [varname] is

specified, Stata will display this information for all variables in the dataset.

This output includes a mini distribution graph for each variable.

browse [varlist] Combined with “if” and “in” conditions, this command can be used to display

a specific section of the dataset in the data window. This allows you to only

look at the variables you are interested in without being distracted by all the

other variables in the dataset, or to only look at a set of observations. It is a

‘safe’ way of looking at the data because you cannot make any changes to

the dataset while browsing.

lookfor [word] Returns all variable names and labels that include [word]. This can be a

helpful way of looking for relevant variables in a dataset if you do not have a

codebook at hand. For example if you want a variable on education “lookfor

edu”. Stata will look in both variable names and labels for ‘edu’.

list [varname] [conditions] List the scores on all variables under [varname] that meet the

conditions. For example

. list cntry B4 gndr if age>50

Displays the values for cntry (country), B4 (trust in country’s

parliament), gndr (gender) for each case in the data for which the

value of age is under 50. It is similar to the “browse” command in

that it allows you to focus on a selected number of variables and

cases, but the output is displayed in the output window, meaning

you can easily copy it and it will be registered in your log-file (if

you’ve opened one). This command can be very useful to explore

problematic cases. It makes it easier to uncover possible data entry

mistakes. If you have generated a new variable (p 17) you can select

the first few observations to see if it worked out as planned.

14

Codes & labels

The variables in a dataset are usually stored under a short name (e.g. cntry, A8, gndr, B5), this is

called the variable name. Using variable names rather than the question text makes typing variables

in the commands much faster. However it is sometimes hard to decipher what a variable name

stands for. Therefore most datasets include a variable label; this contains a description of the

variable. For questionnaires this is usually the question text or a shortened version of it.

Variables can take on different values. In many cases these values refer to answer categories. The

category that belongs to a certain value of a variable is called a value label. For example for the

variable gndr, the variable label is Gender and the value labels are “Male” for value 1, and “Female”

for value 2. This information is important if you want to set conditions (see above) or if you want to

generate a new variable. The variable names and value labels of a dataset are usually listed in a

codebook. You may not always have a codebook at hand. Luckily Stata can make a codebook for you.

Slightly confusingly Stata refers to a list of all value labels for a certain variable as a “value label”.

These overarching value labels are named. For instance the value label belonging to “1-Male” and “2-

Female” is called GNDR. You can find the value label with help of the ‘describe command’

labelbook [labelname] Displays the labels for each value. Sometimes value labels have the same

name as the variable itself, however this is not always the case. For instance,

the variable “gndr” has the value label “GNDR” (remember: Stata is case

sensitive!) and the variables B4, B5, B6, B7, B8, B9 and B10 in the ESS subset

all have value label “LABC”. You can use the ‘describe’ command to

determine the value label of a specific variable and then the labelbook

command to find out the label for each value.

. descr gndr //the value label is ‘GNDR’

. labelbook GNDR //1:male, 2: female, 9: no answer

codebook [varlist] Displays the name, label, type, range, number of observations and number

of missing values of each variable in the dataset. Adding the option “,

compact” will only return number of observations (obs), number of different

values (unique) mean, lowest value (min), highest value (max) and the

variable label (label). Without this option you will also get information on the

variable type (string, byte, etc), number of missing values, and for variables

with a small value range also a frequency tabulation. This command does not

display the value labels.

You can also use the variables manager to look up variable label, type and value labels.

15

Summarizing data

summarize [varlist] displays the number of observations, mean, SD and range of the variable

specified under [varlist]. If no [varlist] is specified, Stata will display this

information for all variables. If the option “, detail” is added, the percentiles,

skew and kurtosis are also displayed.

mean [varlist] displays estimate of mean, standard error, and 95% confidence interval.

Before you look at a mean, you need to check if the missing values are

correctly coded (i.e. as ‘.’, ‘.a’ etc and not as ‘99’, ‘888’ etc.). Otherwise Stata

includes these values in the calculation of the mean. You can request the

mean for subgroups by specifying “, over ([groupingvar])”. For example, to

get the mean of trust in a country’s parliament (B4) by gender (gndr), type

. mean B4, over(gndr)

Note: you can only list a numeric variable as grouping variable, not a string

variable.

tabulate [varname] displays a frequency table for the specified variable. With this command you

can only request a frequency table of one variable at a time. If the suffix

“, miss” is added the table will also display missing values. This is a useful

option to get an idea about the number of missing values. As always,

conditions can be added. For a frequency table of trust in a country’s

parliament (B4) for German (‘DE’ on the variable ‘cntry’) women (a value of 2

on the variable ‘gndr’) that displays the missing values, type:

 . tab B4 if gndr==2 & cntry==”DE”, miss

tab1 [varlist] displays frequency tables for all variables in [varlist]. Conditions can be

specified and missing values requested. To display individual frequency

tables for all immigration attitudes (B35 to B40) only for men who live in

Switzerland:

. tab1 B35 B36 B37 B38 B39 B40 if gndr==1 & cntry==”CH”, miss

If all these variables are all listed underneath each other in the variable list

you can also type

. tab1 B35-B40 if gndr==1 & cntry==”CH”, miss

tabm displays a frequency table for multiple variables with the same answer

categories. This is a user written command that you will need to download

and install. Type ‘findit tab_chi’ in the command window and select the

version from http://www.stata.com/users/njc .

 To display the frequencies of a range of political activities (B13-B19), all with

the same yes-no answer scale:

. tabm B13 B14 B15 B16 B17 B18 B19

You can request the percentages falling into each answer category by adding

the option “, row”.

http://www.stata.com/users/njc

16

. tabm B13 B14 B15 B16 B17 B18 B19, row

tabulate [varname] [varname] Displays a cross tabulation of two variables. The first variable will be

in rows, the second in columns. Stata can display more rows than

columns, so if you have one of the two variables has many values, it

is best to put that in the rows. The default only shows the number of

observations in each cell. Adding “, row” or “, column” will display

row-wise or column-wise percentages. “, nofreq” leaves out the

frequencies. The code

 . tab B4 cntry if age<65, nofreq col

will display a cross tabulation of B4 and country of residence for all

respondents under 65, with column-wise percentages (the

percentage of each answer categories in B4 within each country) and

without the frequencies.

tabstat [varlist], statistics[names of statistics] Displays the statistics requested in [names of

statistics] for all variables under [varlist]. To get the

mean, median, and number of observations for

variables B4-B6, type

 . tabstat B4 B5 B6, statistics (mean median n)

To get see which other statistics you can request

type ‘help tabstat’ in the command window.

table [rowvar] [colvar[supercolvar]] With this command you can either make a three-way

frequency table or a table of summary statistics such as

number of observations, mean, SD, median. To get the

summary statistics you need to use the option “, contents”.

See “help table” for a detailed list of all summary statistics.

The code

 . table cntry, contents (n B4 mean B4 n B5 mean B5)

returns a table with the number of observations (n) and

mean (mean) for variables B4 and B5 for each country. NB

this command can display no more than 5 summary

statistics. The command can be run by subgroup:

 . table cntry, contents (n B4 mean B4 n B5 mean B5) by(gndr)

will display the statistics in two separate tables, one for each

gender.

17

Generating and recoding variables
Before you can do your analyses, you will often need to make some modifications to the variables.

For instance turning ages into age groups. Or you might be interested in the effects of region of

origin (Europe, Asia, North-America, etc.) but the dataset only contains a variable on country of

origin. Or some of the answer categories turn out to be rare and you think it is better to combine

them into larger groups. Or you may want to combine the answers to several questions into one

scale. Or it might be that missing values (‘refusal’, ‘don’t know’) are in the dataset as numerical

values (typically “88” and “99”) and you want to correct this to missing values (“.”, “.a”, “.b”, etc).

In all these cases you can use commands to make the necessary adjustments. There are two

approaches to this; you can make adjustments to the original variable (recoding) or you can use the

information from the original variable to make a new variable (generating). Generally the latter

option is preferable because if you make a mistake, you can simply delete the newly generate

variable and try again, whereas recoding overwrites the original variable. The only exception here is

missing values, for this it is okay to simply recode because the risk of irreversible mistakes is very

low. Below are the most common codes for recoding and generating variables followed by examples.

generate [new variable name]=[definition] With this code you can make new variables. These

can be based on existing variables in the dataset.

You cannot use a name of an existing variable in

[new variable name].

recode [varlist] ([recoding rule]) Recodes a variable. You can use this if you want to inverse

the coding of a variable, summarise it into larger categories

or dichotomise it (i.e. turn it into a variable with only 2

values, usually 0 and 1). Stata will only change the values you

specify in this command, all others will remain the same.

If you specify the option “, gen([newvarname])“ Stata will

create a new variable with the recodes instead of making

changes to the existing variable. This is almost always the

preferable option. You cannot use a name of an existing

variable. To define missing values (see below) you can use

either this command or the “mvdecode” command.

mvdecode [varlist] [if], mv[values] Define missing values; i.e. turning codes into Stata

recognised missing value ‘.’.

replace [varname]=[value] [if] Replaces all scores (or all scores that meet the “if” condition)

by the specified value.

rename [current variable name] [new variable name] Can be used to change the name of a

variable in the dataset. For instance to give a

more intuitive name.

egen Extensions to the generate command. See “help egen” for full list

18

encode [string variable], gen([new variable name]) This command turns a string variable into a

numeric variable. It codes the values in

alphabetical order. If you want a specific

order it is better to use the ‘recode’ or

‘generate’ command. You cannot use a

name of an existing variable in [new variable

name].

You should ALWAYS check if your new variable was generated correctly.

There are several approaches to this

- Make a crosstab of the original and the new variable (this is only useful if the variable has

few categories so that you can easily read the crosstab). Make sure to also request the

missing values:

. tab [original variable] [new variable], miss

- Use the list command to look at the first few observations of both the original and the newly

generated variable

. list [original variable] [new variable]

- Compare the range and mean of the new variable and the old variable with “sum”

. sum [original variable] [new variable]

If the new variable you generate is not what you wanted, you can type

. drop [names of incorrectly generated variables], adjust your syntax and try again.

Examples

One of the first things to do with a variable you want to use in your analysis, is to check if the missing

values have been coded appropriately. If they have not, you need to change this. The ESS subset still

contains all missing values as “normal” values. The missing value codes used vary across variables. To

find out what the codes are for the variable you want to work with, you will first need to look at the

labelbook. For example for B4

 . descr B4 //shows you the name of the value labels for B4 (LABC)

 . labelbook LABC //shows the values for missing values categories

 //77=refusal, 88=don’t know, 99= no answer

 . mvdecode B4, mv (77 88 99) //recodes the values to Stata missing value ‘.’

If you want to be able to distinguish between ‘refusals’ and ‘don’t know’ then it is better not to use

mvdecode but recode each type of missing value into a different Stata accepted missing. For example

. recode B4 (77=.a) (8=-.b) (99=.c)

You can recode the values of several variables at the same time (but make sure they have the same

value labels!)

19

. recode B4 B5 B6 B7 B8 B9 B10 (77=.a) (88=.b) (99=.c)

The ESS subset already has an age variable but if you had needed to create one, you could have

typed

. gen agenew=2010-yrbrn

This tells Stata to create a new variable “agenew” that is defined by the difference between the year

of the survey (2010) and the year of birth (yrbrn), which should give us the age of the respondent at

the time of the survey.

If you want to create a quadratic term for age, age-squared (so “age” multiplied with “age”= age2),

because you think the relationship of a variable with age is not linear but quadratic, type

. gen age2=age*age //tells Stata to make a new variable called ‘age2’ that is

calculated by multiplying age with age

To make categories out of a variable, it is easiest to use the recode command with the “, gen” option.

For example to generate a variable of age categories, you can type

. tab agea //to check if there are no missing value codes or unlikely values.

//This shows the variable has a value of ‘999’, which is likely a

missing value rather than someone’s actual age.

. recode agea (min/20=1) (21/30=2) (31/40=3) (41/50=4) (51/60=5) (61/70=6) ///

(71/98=7) (999=.c), gen(agecat)

This will generate a new variable called “agecat”, that has a score of ‘1’ for all observations with an

age from the lowest value on that variable (the “min”) up to and including 20, the value 2 for all

observations with the value in age of 21 up to and including 30, etc. Unless otherwise specified,

missing values (. .a .b etc) will be copied as missings. If missing values have not been converted to

Stata missing values, you can do that with the same command.

To check whether the coding of the age category variable is correct:

. tab agea agec, miss

As you can see it is a bit annoying to only have the new values and not the labels (so ‘1’ and not “20

and younger”). You can attach value labels to your newly generated variables (see

Variable and value labels).

If you would like to make a variable for gender with a clearer name and coding you could type

. descr gndr //determine the name of the value label

. labelbook GNDR //determine the value labels

. gen female=. //generate a new variable ’female’, with all values
//missing

. replace female=1 if gndr==2 //gives the women in the dataset the score of ‘1’

. replace female=0 if gndr==1 //gives the men in the dataset the score of ‘0’

Check your new variable, for example by making a crosstab it with the original one

. tab female gndr, miss

20

You can also combine gen and recode in one command

.recode gndr (2=1) (1=0), gen(female)

Stata has a quick way of creating dummies (=dichotomous variables with values 0 and 1). If you type

. gen female= gndr ==2

Stata creates a variable that is ‘1’ if the score on gndr is ‘2’ (the value for women) and ‘0’ in all other

cases. Remember Stata sees missing values as the largest number so respondents whose gender is

not known will also receive a ‘0’ on the new variable female. Specifying the condition “<.” (“smaller

than missing”) tells Stata to leave out all cases with missing values on this variable, effectively giving

these cases a missing value code again (.). To keep Stata from also giving cases with a missing value

on gndr a code of ‘0’, type

.gen female= gndr ==2 & gndr <.

To rescale a variable, you can simply generate a new variable by dividing or multiplying the original

variable. For instance if you want to change the units of measurement, for example from dollars to

thousands of dollars. If you want to rescale age in years to age in months you can type

. gen agemonths=age*12

Please note that this does not improve the precision of the age measurement: you do not have the

information to determine whether somebody is 264 months (22 years) or 266 months (22 years and

2 months).

Sometimes data analysts centre a variable so that a value of ‘0’ corresponds to the mean score,

negative values to scores below the mean and positive values to scores above the mean. You can do

this by using the information that Stata stores after a summarize command and use if in a gen

command. To centre age, type

. sum age

. egen c_age=age-r(mean)

“r(mean)” instructs Stata to use the mean from the previously generate summary table. This only

works if you first request the mean with the sum command.

If you want to standardise a variable (i.e. turn raw scores into z-scores with a mean of 0 and a

standard deviation of 1) this can simply be done with help of the egen command. For example if you

want to create a standardised version of trust in the country’s parliament (B4) you can type

. egen z_B4=std(B4)

Standardisation can be useful if you want to combine several variables measured on different scales

into 1 index/scale (see below). NB don’t forget to correctly define missing values before

standardising the variable.

For data manipulation (generating new variables, setting conditions on statistical tests), it can be

convenient to convert a string variable into a numeric variable.

. encode cntry, gen(country)

21

The dataset now includes a new variable ‘country’ that is numeric. By default Stata assigns codes

alphabetically:

1 - CH

2 - DE

3 - ES

4 - FR

5 - GB

6 - NL

If this not what you want, you can do the recoding in steps. For example

. gen country=0

. replace country=1 if cntry==”DE”

. replace country=2 if cntry==”NL”

. replace country=3 if cntry==”FR”

. replace country=4 if cntry==”GB”

. replace country=5 if cntry==”FR”

. replace country=5 if cntry==”ES”

When a variable that contains only numbers (for instance age) is stored as a string variable, you

should not use encode but destring.

. destring [varlist] , {generate(newvarlist)|replace} [destring_options]

22

Generating an index

There are several ways of creating an index (combining several variables into 1 variable).

Let’s say we want to combine all variables that measure trust into a trust index. A first option is to

take the mean scores on all questions on trust. Before you do this, you first need to check whether

the answer scales are all in the same direction: see that the highest score in all cases means ‘most

trust’ (or all ‘least trust’)

. descr B4-B10

. labelbook LABC

All variables have the same value label (LABC) which runs from 0 ‘no trust at all’ to 10 ‘complete

trust’.

. egen trust=rowmean(B4-B10)

This tells Stata to create a variable called ‘trust’ that is the mean of the scores of each case

(respondent) on the variables B4-B10 (so B4, B5, B6, B7, B8, B9, B10). Remember what a dataset

looks like; each variable is a column and each case is a row. So ‘rowmean’ requests the mean of the

answers on the listed variables (B4-B10) for each row (each case).

Because all these questions have answer scales from 0-10, the trust variable will range from 0-10. If a

respondent did not answer all questions, the score on “trust” is based on the means of the remaining

variables. For example if a respondent only answers B4, B7 and B10 his/her score on trust is the

mean of these 3 answers. Make sure you have given missing values codes of ‘./.a/.b/etc’ before you

generate this new variable, otherwise the codes 77/88/99 will distort the mean. To see if it has

worked you can look at the first few observations

 . list B4-B10 trust if _n<25, nolabel

This shows the scores on variables B4 through B10 and the new trust variable for the first 24 cases in

the dataset (_n<25). The ‘, nolabel’ option at the end requests that Stata shows the values (numeric

codes) for variables that have value labels making the output easier to read.

To check whether the index has the proper range (so 0-10) you can ask for a summary

.sum trust

You can also make an index by adding the scores on a range of variables. For trust this would be

. egen trustindex=rowtotal(B4-B10)

This index will vary from 0 to 70 (if a respondent answered “10-complete trust” to all 7 questions).

Unlike with the previous command there is no compensation for missing answers; a person who has

only answered 6 questions can have a maximum score of 60.

You can also make an index by giving ‘points’ for a certain value. For instance if you want to make an

extreme mistrust index that measures on how many items respondents have answered that they

have “0 no trust at all”, you can type

. egen mistrust=anycount(B4-B10), v(0)

23

This tells Stata to add ‘1’ to the score of mistrust for each of the items B4-B10 where the answer

score is ‘0’. This variable ranges from 0 to 7 (there are 7 variables). A respondent who has answered

“0 no trust at all” on 4 of these questions will receive a score of 4. A respondent who answered “5”

on all questions will receive a score of 0, as will a respondent who answered 1-2-3-4-3-4-1 or any

other combination of answers that does not include any ‘0’. This way of generating an index is helpful

if you are interested in extreme scores.

Please note that just because a set of questions has the same answer scale, does not mean that

scores mean the same. For example, if we had the following questions measuring attitudes to

immigration

“Immigrants are a great asset to our country”

“Immigrants are a burden on the welfare state of our country”

and both questions had an answer scale running from “0-completely disagree” to “5-completely

agree”. Even though the answer scale is the same, the direction is different; the first question is a

positive attitude, the second a negative. Before combining these two questions into a scale on

attitudes to immigration you will need to reverse the code on one of them.

Variable and value labels

You may want to add a variable label to your newly generated variable. You can assign a variable

label with:

. label variable [variable name] [“label of variable”]

For instance if you want to give the label “index of mistrust” to the mistrust variable, type

. label variable mistrust “index of mistrust”

You can also assign value labels. You first need to define a value label using

. label define [name of value label] [value] “[label]” [value] “[label]”

 and then attach it to the relevant variable. For the age category example from page 19.

. label define agecategories 1 ”under 21” 2 “21-30” 3 “31-40” 4 “41-50” 5 “51-60”
6 “61-70” 7 “70+”
. label values agecat agecategories

I usually give the value label the same name as the variable, but you do not have to. You can give it a

similar name, for example [varname]_label. You can also recode and label variables in one go:

. recode agea (min/20=1 "under 21") (21/30=2 "21-30") (31/40=3 "31-40") ///
(41/50=4 "41-50") (51/60=5 "51-60") (61/70=6 "61-70") (71/max=7 "70+") ///
 (999=.c), gen(agecat)

24

Selecting data and variables (creating a subset)
Many datasets are very large and often you will not be interested in all the data. It can sometimes be

useful to delete parts of the dataset so that your analyses run quicker and you do not get lost in the

large number of variables. There are a range of commands you can use for this.

drop [varlist] Delete variable(s) from the dataset

drop if [condition] Delete a specified subset of cases from the dataset

keep [varlist] Delete all variables except the ones mentioned in [varlist]

keep if [condition] Delete all observations from the dataset except the ones that meet the

criteria of [if]

For example, if you want to use the ESS dataset to only look at Spain, you could delete the data from

all other countries by typing

 .keep if cntry==”ES” //keep cases where country equals Spain (ES)

Or

.drop if cntry!=”ES” //drop cases where country does not equal (!=)
//Spain

If you only want to keep the northern countries in this subset of ESS and want to delete Spain

.drop if cntry==”ES” //tells Stata to delete all cases where the value of “cntry” is Spain

(ES)

or

.keep if cntry!=”ES” //tells Stata to keep all cases where the value of “cntry” is not (!=)

Spain (ES)

25

Basic statistical tests
Stata is capable of doing a very large range of statistical tests. Below are examples of the tests you

will do on this course. To look up the commands for any other tests, simply use the help function of

Stata (see page 35). You can use the ‘if’ filter for all of these commands to use only a subset of the

data.

Chi-square

The chi-square test on the relationship between two categorical variables is an option in the tabulate

command. If you want to test if the relative frequency of each category of “F42 Which of the

descriptions on this card comes closest to how you feel about your household's income nowadays?” is

equal across the countries in the dataset, type

. tab cntry F42 , chi2 row

Stata will print the chi-square value, degrees of freedom and the associated probability (p-value). If

you want to know both observed and expected frequencies, you can use the command tabchi:

. tabchi cntry F42

Tabchi is a user-written command. If you have not done so already, you will need to download and

install it. Type ‘findit tab_chi’ in the command window and select the version from

http://www.stata.com/users/njc . In the options for this command you can ask for residuals. You can

either request raw residuals (i.e. observed-expected):

. tabchi cntry F42, raw

Pearson standardised residuals:

. tabchi cntry F42, pearson

or adjusted residuals (i.e. Pearson residuals adjusted for the error in estimating the standard error by

taking the size of the sample into account):

. tabchi cntry F42, adjust

Both Pearson and adjusted residuals can be interpreted in the same way as z-scores, with -1.96 and

1.96 as critical values for the two-tailed 95% confidence interval.

T-tests

ttest [varname]=[value] One-sample mean-comparison test: test if the mean of a variable is

equal to a specified value. For example to test if the mean of trust in

country’s parliament (B4) is equal to 5

. ttest B4 =5

ttest [varname1]= [varname1] Paired t-test: tests if the mean of two variables is equal (i.e.

if the difference between paired scores is 0). For a paired t-

test it is not necessary to test for equality of variance. To test

if the people have as much trust in parliament (B4) as in the

legal system (B5) you can type

http://www.stata.com/users/njc

26

. ttest B4 = B5

ttest [varname], by([groupingvar]) Two-group mean-comparison test; if you want to compare

the mean of two groups. Before doing this test, you first

need to determine whether the variances of both groups are

equal. You can do this with the command “oneway

[dependent variable] [independent variable]”. For example if

you want to see if there are gender differences in the view

on whether “Immigrants make country worse or better place

to live” (B40), you should first test the equality of variance

on question B40 for men and women:

. oneway B40 gndr

The output gives the test statistic for the Bartlett's test for

equality of variances (the null-hypothesis is that the

variances are equal). If the test indicates equal variances, the

command for an independent (unpaired) t-test of a

difference in opinion for men and women is

. ttest B40, by(gndr)

If the variances cannot be assumed to be equal (the null-

hypothesis is rejected), the option “unequal” needs to be

added:

. ttest B40, by(gndr) unequal

prtest [varname]=[value] One-sample proportion-comparison test: test if the

proportion of a variable is equal to an expected value. Note;

the variables of interest has to be coded 0-1 before this test

can be used. For example to test if the proportion of women

in the dataset is 50% (.5), create the variable women coded

‘1’ for women and ‘0’ for men, and then request

. prtest women = .5

prtest [varname], by([groupingvar]) Two-group proportion-comparison test: if you want to

compare the proportion of a certain characteristic between

two groups. Note; the variable of interest has to be coded 0-

1 before this test can be used. For example to test if the

proportion of women is the same in the immigrant and

native group (C28), first create the variable women coded ‘1’

for women and ‘0’ for men, and then request

. prtest women, by(C28)

27

Anova

anova [dependent var] [independent varlist] [if] This command, does not accept string

variables. If one of your variables is captured

by a string variable, you will first need to

turn it into a numeric variable (see encode).

To test if people have a different attitude towards immigration (B40) depending on their

employment status (F17d, 9 categories):

. anova B40 F17d

If this shows significant between-group differences, follow it up by a posthoc test; the Tukey HSD.

Commands for post-hoc tests are not part of the standard Stata commands. For first time use you

need to download this command (type ‘findit tukeyhsd’ in the command window and install the files)

and qsturng (type ‘findit qsturng’ in the command window and install the files).

. tukeyhsd F17d

This command will give the critical value in the first output lines. Note that the difference in means

presented in the ‘mean dif’ column is an absolute number; you need to look at the reported group

means to determine the direction. Note that the critical value depends on the degrees of freedom

(total sample size - the numbers of groups). The command adds * to significant results. You can

adjust the significance level in the tukeyhsd test (default is .05). For an alpha of 0.01, type

. tukeyhsd F17d, level(.99)

From version 12, Stata has a default command for multiple pairwise comparisons that also gives the

HSD results. The command for this is

. pwmean B24,over(F17d) mcompare(tukey) effects

Correlation

correlate [varlist] Displays correlations for each pairing of variables but only for cases with no

missing values on any of the variables in [varlist].

pwcorr [varlist] Displays pairwise correlations; meaning all observations with scores on both

variables of each pair are displayed. If there are missing values the

correlations of some pairs can be based on more cases than other pairs. You

can request the number of observations for each pair by adding the option

“, obs”. You can also request significance levels with “, sig”. For example

 . pwcorr B4-B9, sig obs

 will display a table with the correlations between each pair of variables of B4

B5 B6 B7 B8 and B9, including significance level (p-value) and number of

observations. If you only have two variables or if there are no missing values

on any of the variables in the list pwcorr and corr will give the same results.

28

spearman [varlist] Displays the Spearman rank correlation coefficients (correlations for ordinal

level variables).

corrci [varlist] Displays the 95%Confidence Interval of a Pearson correlation. This command

needs to be downloaded for first time use; type ‘findit corrci’ in the

command window and select version pr0041_1. For more information on the

calculations underlying the command see http://www.stata-

journal.com/article.html?article=pr0041

Regression

reg [dependent var] [independent varlist] [if] This command runs an OLS (ordinary least squares)

regression. This is the type of regression you do

when your dependent variable is, or can be assumed

to be, of at least interval level. If you for instance

want to know the relationship between gender

(gndr) and trust in a country’s parliament (B4),

controlling for age (age).

. reg B4 gndr age

 Before you do this, you first need to verify that

missing values have been coded appropriately. If not

you need to recode the variables before including

them in the regression.

Factor variables

To use ordinal (e.g. level of education) or nominal level (e.g. type of house) variables as independent

variables in your regression you need to turn them into dummies. Instead of creating a new variable

for each answer category, you can also use factor variables “i.varname”.

For example, you want to include type of residence (F14) in model on attitudes towards immigrants

(B40). Instead of creating four dummy variables (F14 has 5 categories), you can type

. reg B40 i.F14

By default, Stata uses the first category as reference category. You can however change this by using

“ib(category). varname”. If you want to use suburbs (F14=2) as reference category instead of “big

city” (F14=1):

. reg B40 ib2.F14

http://www.stata-journal.com/article.html?article=pr0041
http://www.stata-journal.com/article.html?article=pr0041

29

Keeping sample size constant across models
When you run a regression model, it is usually wise to build it up in steps. This way you can see the

effects of the addition of a group of variables. When you add a variable of group of variables to your

model, the sample size can drop due to item non-response: respondents might have refused to

answer a question, or it may not apply to them (for example the number of times a man has been

pregnant).

For instance you want to see if the age has an effect on trust (the index created on p 22). You then

want to check if this could be explained by political left-right orientation (B23) and years of education

(F16)

. reg trust age //N=6882

. reg trust age F16 //N=6820

. reg trust age F16 B23 //N=6251

If you are comparing models of the same dependent variable with different numbers of observations

(N) it is difficult to determine whether differences between the models (estimated size of

coefficients, level of significance) are due to the addition of new variables, caused by to the drop in

observations (decreasing statistical power) or a selective non-response (the cases that have a score

on the variable you added differ from the cases who have a missing value).

You can do ‘multiple imputation’ to get estimates for the missing values. However this is a rather

complex procedure to get right. Instead, if you want to present your model in steps in a paper or

presentations there are a number of ways to keep the sample size constant across models (when you

are playing with your data, it is not crucial to keep sample size constant: only when you want to draw

the final conclusions).

Option 1. Exclude observations with missing values variable by variable.

You can exclude observations with missing value on the variables that will be added in later models

by adding the condition "variable<." is the same as saying that cases with missing values on that

variable should be excluded.

. reg trust age if F16<. & B23<. //N=6251

. reg trust age F16 if B23<. //N=6251

. reg trust age F16 B23 //N=6251

Option 2. Making a subsample of the data with “e(sample)”

A more efficient way of is by creating a subsample. You first run the full model (i.e. the model with

all your variables of interest)

. quietly reg trust age F16 B23 //’'quietly” tells Stata not to show the
output in the output window

You can then call on the sample information using ‘e(sample)’

. reg trust age if e(sample) //N=6251

. reg trust age F16 if e(sample) //N=6251

The e(sample) retains the sample size information until you run another regression model/

30

Option 3. Marking cases with no missing values using “mark”

You can also generate a variable that is ‘1’ for cases without missing values on any of the variables in

the final model and ‘0’ otherwise.

You first create a marking variable, and then use it to mark the cases you are interested in.

. mark [variablename]

. markout [variablename] [list of variables in your full model]

So for example

. mark nomiss

. markout nomiss trust age F16 B23

. reg trust age if nomiss==1 //N=6251

. reg trust age F16 if nomiss==1 //N=6251

. reg trust age F16 B23 //N=6251

Basic graphs
Stata has a large range of graphs that can be personalised to a high degree; colours, axis labels,

scales, etc. Customising however requires quite a lot of code, so sometimes it is easier to just copy

the data into Excel and make your graph there. The codes for the most common graph types are:

graph box Create a box-and-whiskers plot. You can request Stata to separate by a grouping

variable. For example

 . graph box B4, over(cntry)

 will display a box-and-whiskers plot of variable B4 for each country in the dataset.

histogram You can make a histogram to get a good idea about the distribution of a variable.

with the option “, bin[value]” you can adjust the number of ‘bins’ (columns) that

Stata divides the data into. Alternatively by using “, width(value)” you can determine

the width of the bins

. histogram yrbrn, width(5)

shows a histogram for the variable “yrbrn” (year of birth), divided into categories of

5 years.

graph twoway scatter [var1] [var2] Creates a scatterplot of two variables. It will show whether

there is a correlation between these two variables. If you

make a scatterplot with 1 or 2 ordinal variables that have

few categories, many points in the scatter graph will overlap.

In that case you can use the option “,jitter[value]” to add a

small random number to each data-point. For example

. graph twoway B4 B5, jitter(2)

 You can also add a regression line indicating the main

tendency in the relation between the variables in the plot:

. graph twoway (scatter B4 B5, jitter(2)) (lfit B4 B5)

31

Exporting tables to Excel, Word or LaTeX
The easiest way to copy tables to Excel or Word for editing and use in your papers is to simply select

the table in the output window, right-click and choose “copy table”. If you use “Crtl+c” the

formatting tends to get lost. It is also important to ensure you don’t copy the command or any other

lines above or below the tables as this will also mess-up the formatting. You can also choose to “copy

table as html”. That sometimes works better when copying to Excel.

Stata 13 introduced a new way of exporting tables to Excel using ‘putexcel’

. putexcel excel_cell=matrix(expression) … using filename[, options]

To export a correlation matrix to Excel

. corr B4-B9

. putexcel A1=matrix(r(C), names) using "trust correlations"

If you want to overwrite a previous file by the same name, you need to add the option “, replace”

You can also export other types of output, but the code gets quite complicated. For some examples

see

 http://www.stata.com/manuals13/pputexcel.pdf

 http://blog.stata.com/2014/02/04/retaining-an-excel-cells-format-when-using-putexcel/

There is a relatively easy way of exporting regression tables to Word or Excel using the user-written

esttab and estout commands (to download: ‘findit estout’) or outreg2 (‘findit outreg2’). One of the

many strengths of these commands is that you can create a table with several models.

estout shows the result in the Stata result window. esttab can also export the results to Word, Excel,

or LaTeX. For detailed documentation, see http://repec.org/bocode/e/estout/index.html

The commands work in two steps. First you run the analyses and store the results.

. eststo: [quietly] [regressionsyntax]

 Then you export it in the format you desire.

. estab using [filename], [options]

So for the three-step regression from page 30:

. eststo: quietly reg trust age if nomiss==1

. eststo: quietly reg trust age F16 if nomiss==1

. eststo: quietly reg trust age F16 B23

Stata stores the estimates and numbers them (est1, est2 etc)

. esttab

Displays the estimates in the output window, complete with stars for significance and standard

errors in parentheses. You can add labels to the models. For instance,

. esttab, label mtitles("Model 1" "Model 2" "Model 3")

Or put the standard errors next to the coefficients instead of underneath using the option “wide”

http://www.stata.com/manuals13/pputexcel.pdf
http://blog.stata.com/2014/02/04/retaining-an-excel-cells-format-when-using-putexcel/
http://repec.org/bocode/e/estout/index.html

32

. esttab, label mtitles("Model 1" "Model 2" "Model 3") wide

You can round coefficients using the option “b(digits)”. To round to two digits

. esttab, label mtitles("Model 1" "Model 2" "Model 3") wide b(2)

To export the results to Excel add “using filename.csv” (NB you need to put this before the options).

. esttab using "exceltablefile.csv", label mtitles("Model 1" "Model 2" "Model 3")

When you have made your table, you need to clear the estimates from Stata’s working memory

.eststo clear

The main advantage of outreg2 over esttab is that it can handle a larger range of output including

cross-tabulations and tables with descriptives. outreg2 works in a slightly different way. You directly

specify the output file in the outreg2 command. You can access the file via explorer or by opening it

in Word, but outreg2 also displays a link (in blue) in the output window of Stata. In the examples

below, the output is exported to a Word document named ‘wordfile’.

To make a regression table:

. reg trust age if nomiss==1

. outreg2 using "wordfile.doc", replace

. reg trust age F16 if nomiss==1

. outreg2 using " wordfile.doc", append

. reg trust age F16 B23

. outreg2 using " wordfile.doc", append

It is best to include ‘replace’ to the first outreg2 command line to ensure any already existing file by

the same name is overwritten.

As with esttab, you can add labels to the models (, ctitle(modelname)), and change the number of

decimals in the output. Using ‘,dec(number)’, for all decimals, ‘,bdec(number)’, for the decimals of

coefficients, ‘,sdec(number)’, for standard errors and ‘,rdec(number)’ for R-square. You can also

request that the first column print variable labels instead of variable names by adding ‘,label’. To get

a table with variable labels, model names, R-square rounded to 2 decimals and all other output

rounded to 3 decimals:

. reg trust age if nomiss==1

. outreg2 using "myreg.doc", replace ctitle(Model 1) dec(3) rdec(2)

. reg trust age F16 if nomiss==1

. outreg2 using "myreg.doc", append ctitle(Model 2) dec(3) rdec(2)

. reg trust age F16 B23

. outreg2 using "myreg.doc", append ctitle(Model 3) dec(3) rdec(2)

For a table of descriptives, the basic command is

. outreg2 using [filename], sum(log)

This can be extended by limiting the number of variables included ‘, keep(variablelist)’, limiting the

number of statistics displayed ‘, eqkeep(statistics list)’.

33

. outreg2 using "descriptives.doc", replace sum(log) keep(trust age F16 B23)
eqkeep(N mean)

For a cross-tabulation, the basic command is

. outreg2 [variables] using [filename], cross

To get a cross tabulation of trust in parliament (B4) by country (cntry):

 . outreg2 B4 cntry using “crosstabulation.doc”, replace cross

By default outreg2 displays significance stars for difference in from the category mean.2 To suppress

these, add ‘,noaster’

. outreg2 B4 cntry using “crosstabulation.doc”, replace cross noaster

Merging datasets
Before you can start your analysis you may need to merge (combine) several datasets. For instance if

you want to use longitudinal data and the information of each wave is stored in a separate file. Or if

you are using a survey such as the Mexican Migration Project that consists of several sections. Or if

you use a multi-country survey and the data for each country is store in a separate file. The

commands you can use are merge, joinby and append. Append is used when you want to add cases

(rows), merge and joinby can be used to add variables (columns).

Let’s say you want to study attitudes towards immigration in France and Germany. The data is stored

in two different datasets “France.dta” and “Germany.dta”. You can combine these using append.

. use “France.dta”, clear

. append using “Germany.dta”

. save “France and Germany.dta”, replace

Before you merge the files, you should make sure you can distinguish the French from the German

data. If there is no variable that does this, you need to add one.

. use “France.dta”, clear

. gen country=1

. save “France.dta”, replace //in this case it’s okay to overwrite the
original dataset: you are making a minute
change

. use “Germany.dta”, clear

. gen country=2

. save “Germany.dta”, replace

. use “France.dta”, clear
. append using “Germany.dta”
. label define COUNTRY 1 “France” 2 “Germany” //to label the values of

‘country’
. label variable country COUNTRY
. save “France and Germany.dta”, replace

2 Thanks to Jorge Eduardo Pérez Pérez for pointing this out to me on the Stata forum.

34

If you want to merge data on the same respondents from different waves of a panel study you can

use ‘merge’. To link information on the same observation (usually a respondent) across several files,

you need to find the unique identification number. Usually this is called something like “ID”, “persnr”

or “serial”.

Let’s say you want to study the relation between the composition of a person’s high school class

(share of co-ethnics and immigrants) at the time of the first wave and their ethnic identification at

the time of the second wave of the survey. The data is stored in “wave1.dta” and “wave2.dta”. The

variable that uniquely identifies respondents is called ‘personid’. Before you can merge you need to

sort the files you are merging on the identification variable

. use “wave1.dta”, clear

. sort personid

. save “wave1.dta”, replace

. use “wave2.dta”, clear

. sort personid

. save “wave2.dta”, replace

Now that the data is sorted, you can merge:

. use “wave1.dta”, clear //this is called the ‘master data’

. sort personid

. merge 1:1 personid using “wave2.dta” //this is called the ‘using data’

. save “waves 1 and 2.dta”, replace

Some people who participate in the first wave, may not have participated in the second wave. You

need to decide whether you only want to keep people who participate in both waves, or also include

people who are only in the first wave.

The variable _merge identifies whether observations were present in both datasets:

1= only in master data

2= only in using data

3= in both files

To only keep observations (respondents) present in both waves

. keep if _merge==3

35

Loops
When you want to do a number of operations (recoding, analysis) that are very similar, you can make

your code more efficient by using loops “foreach”. There are multiple types of loops. The two types

that you are most likely to use in this stage of your data analysis career are varlist for lists of

variables, and numlist for lists of numbers.

The basic syntax is:

. foreach lname {in|of listtype} list {
 . commands referring to `lname'
. }

For example, you want to run the same regression model for a range of dependent variables. You

want to see the effects of age, gender, and education for a range of trust variables (B4, B5, B6, B7,

B8, B9, B10). You could do this by writing several lines of code

. reg B4 age gndr F16

. reg B5 age gndr F16

. reg B6 age gndr F16

. reg B7 age gndr F16

. reg B8 age gndr F16

. reg B9 age gndr F16

. reg B10 age gndr F16

Or by writing a loop

. foreach trustvar of varlist B4 B5 B6 B7 B8 B9 B10 {
 . reg `trustvar’ age gndr F16
. }

This not only saves a lot of spaces, but also makes it easier to make changes to your model.

It is up to you how to call your list. I here used ‘trustvar’, but I could have also used ‘t’ or any other

letter or number. To call on your list make sure to use the correct quotation marks:

` (next to the one on most QWERTY keyboards) to open, and

‘ (next to the :/: on most QWERTY keyboards) to close.

If you get it wrong Stata will tell you ‘invalid name’.

To run a regression on trust for each of the different residence types (F14) separately you could write

. reg trust age gndr F16 if F14==1 //respondent who live in a big city

. reg trust age gndr F16 if F14==2 //suburbs of a big city

. reg trust age gndr F16 if F14==3 //town or small city

. reg trust age gndr F16 if F14==4 //country village

. reg trust age gndr F16 if F14==5 //farm or home in countryside

Or use a loop

. foreach x of numlist 1 2 3 4 5 {
 . reg trust age gndr F16 if F14==`x’
. }

Loops can be used for all the commands in Stata (tab, corr, ttest, etc.)

36

Help and further reading
Stata has a wonderful “help” function. Just type “help” and whatever command you want

information on in the command window and hit enter. Stata will display a help file that explains the

composition and option of that command. It also gives several examples at the bottom of the help

file. If you don’t know the name of a command you can just type the name of the option you would

like to use, for example “help crosstab”. Stata will then suggest a number of help files that it thinks

might be relevant to your search.

Good introduction books to Stata are:

Acock, Alan C (2012) A Gentle Introduction to Stata, 3rd Edition Stata Press

Kohler, Ulrich & Frauke Kreuter (2012) Data Analysis Using Stata, 3rd Edition. Stata press

Pevalin, David J & Karen Robson (2010) The Stata survival manual. Maidenhead, UK: Open University

Press

Kohler and Kreuter provide the best syntax based introduction, but can be a bit hard to follow for

people who have never worked with a syntax-based statistical programme before. Pevalin and

Robsen also take a syntax based approach but give more context on why you would want to use a

certain command, e.g. why you would want to recode a variable. Though this can help people with

less experience, I feel some of their examples are poorly chosen. Acock uses a menu-driven rather

than a syntax-based approach.

Stata has a very active user community. Google searches with the problem at hand and the word

“Stata” in it usually give hits to sites where your problem is discussed.

There are also a number of useful websites:

 UCLA stats website http://www.ats.ucla.edu/stat/stata/ This site contains detailed examples

for common types of analyses, exercise databases, and a good search function.

 California Population Centre Stata tutorial

http://www.cpc.unc.edu/research/tools/data_analysis/statatutorial This site is more suitable

for people who already have some experience of code driven data analysis. What they do

really well is explain why they’ve set-up the code examples as they did; e.g. explaining what

would happen if the order of codes is changed.

 Princeton online Stata tutorial http://data.princeton.edu/stata/ Not as detailed as the other

two sites, but the strength of this site is that it shows more of the output (tables, graphs),

rather than only the code.

 Statalist forum http://www.statalist.org/forums/ . If can browse existing discussions or sign

up and ask questions to the other members. You usually get good advice, but please note

that if you ask questions that have already been discussed on the Statalist forum and/or can

be found in any ‘getting started with Stata’ guide, ask vague questions or do not use your

real name, you are likely to be told off by list-members.

For graphs I recommend

 Mitchell, M. N. (2012) A visual guide to Stata graphics. Third edition. Stata Press.

 http://data.princeton.edu/stata/graphics.html

 http://www.stata.com/support/faqs/graphics/gph/stata-graphs/

 http://www.ats.ucla.edu/STAT/stata/library/GraphExamples/default.htm

http://www.ats.ucla.edu/stat/stata/
http://www.cpc.unc.edu/research/tools/data_analysis/statatutorial
http://data.princeton.edu/stata/
http://www.statalist.org/forums/
http://data.princeton.edu/stata/graphics.html
http://www.stata.com/support/faqs/graphics/gph/stata-graphs/
http://www.ats.ucla.edu/STAT/stata/library/GraphExamples/default.htm

